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In this tenth edition we have retained the objectives and approaches for teaching 

materials science and engineering that were presented in previous editions. These objec-

tives are as follows:

 • Present the basic fundamentals on a level appropriate for university/college 

students.

 • Present the subject matter in a logical order, from the simple to the more complex.

 • If a topic or concept is worth treating, then it is worth treating in sufficient detail 

and to the extent that students have the opportunity to fully understand it without 

having to consult other sources.

 • Inclusion of features in the book that expedite the learning process, to include the 

following: photographs/illustrations; learning objectives; “Why Study . . .” and 

“Materials of Importance” items; “Concept Check” questions; questions and 

problems; Answers to Selected Problems; summary tables containing key equations 

and equation symbols; and a glossary (for easy reference).

 • Employment of new instructional technologies to enhance the teaching and 

learning processes.

New/Revised Content

This new edition contains a number of new sections, as well as revisions/amplifications of 

other sections. These include the following:

 • New discussions on the Materials Paradigm and Materials Selection (Ashby) 

Charts (Chapter 1)

 • Revision of Design Example 8.1—“Materials Specification for a Pressurized 

Cylindrical Tank” (Chapter 8)

 • New discussions on 3D printing (additive manufacturing)—Chapter 11 (metals), 

Chapter 13 (ceramics), and Chapter 15 (polymers)

 • New discussions on biomaterials—Chapter 11 (metals), Chapter 13 (ceramics), and 

Chapter 15 (polymers)

 • New section on polycrystalline diamond (Chapter 13)

 • Revised discussion on the Hall effect (Chapter 18)

 • Revised/expanded discussion on recycling issues in materials science and 

engineering (Chapter 22)

 • All homework problems requiring computations have been refreshed

BOOK VERSIONS

There are three versions of this textbook as follows:

 • Digital (for purchase)—formatted as print; contains entire content
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 • Digital (in WileyPLUS)—formatted by section; contains entire content

 • Abridged Print (Companion)—binder ready form; problem statements omitted

ONLINE RESOURCES

Associated with the textbook are online learning resources, which are available to both 

students and instructors. These resources are found on three websites: (1) WileyPLUS, (2) a 

Student Companion Site, and (3) an Instructor Companion Site.

WileyPLUS (www.wileyplus.com)

WileyPLUS is a research-based online environment for effective teaching and learning. It 

builds students’ confidence by taking the guesswork out of studying by providing them with 

a clear roadmap: what is assigned, what is required for each assignment, and whether assign-

ments are done correctly. Independent research has shown that students using WileyPLUS 

will take more initiative so the instructor has a greater impact on their achievement in the 

classroom and beyond. WileyPLUS also helps students study and progress at a pace that’s 

right for them. Our integrated resources–available 24/7–function like a personal tutor, di-

rectly addressing each student’s demonstrated needs by providing specific problem-solving 

techniques.

What do students receive with WileyPLUS?

They can browse the following WileyPLUS resources by chapter.

 • The Complete Digital Textbook (at a savings up to 60% of the cost of the in-print 

text). Each chapter is organized and accessed by section (and end-of-chapter 

elements). (Found under Read, Study & Practice/CONTENTS/Select Chapter 

Number/CHAPTER RESOURCES/Reading Content.)

 • Virtual Materials Science and Engineering (VMSE). This web-based software 

package consists of interactive simulations and animations that enhance the 

learning of key concepts in materials science and engineering. Included in VMSE 

are eight  modules and a materials properties/cost database. Titles of these modules 

are as follows: (1) Metallic Crystal Structures and Crystallography; (2) Ceramic 

Crystal Structures; (3) Repeat Unit and Polymer Structures; (4) Dislocations; 

(5) Phase Diagrams; (6) Diffusion; (7) Tensile Tests; and (8) Solid-Solution 

Strengthening. (Found under Read, Study & Practice.)

 • Tutorial (“Muddiest Point”) Videos. These videos (narrated by a student) help 

students with concepts that are difficult to understand and with solving 

troublesome problems. (Found under Read, Study & Practice.)

 • Library of Case Studies. One way to demonstrate principles of design in an 

engineering curriculum is via case studies: analyses of problem-solving strategies 

applied to real-world examples of applications/devices/failures encountered by 

engineers. Six case studies are provided as follows: (1) Materials Selection for a 

Torsionally Stressed Cylindrical Shaft; (2) Automobile Valve Spring; (3) Failure of 

an Automobile Rear Axle; (4) Artificial Total Hip Replacement; (5) Intraocular 

Lens Implants; and (6) Chemical Protective Clothing. (Found under Read, Study & 

Practice.)

 • Mechanical Engineering (ME) Online Module. This module treats materials 

science/engineering topics not covered in the printed text that are relevant to 

mechanical engineering. (Found under Read, Study & Practice.)

 • Flash Cards. A set of flash-cards has been generated for most chapters. These can 

be used in drills to memorize definitions of terms. (Found under Read, Study & 

Practice/CONTENTS/Select Chapter Number/CHAPTER RESOURCES/

Flashcards.)
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 • Extended Learning Objectives. This is a more extensive list of learning objectives 

than is provided at the beginning of each chapter. These direct the student to study 

the subject material to a greater depth. (Found under Read, Study & Practice/

CONTENTS/Select Chapter Number/CHAPTER RESOURCES/Extended 

Learning Objectives.)

 • Student Lecture Notes. These slides (in PowerPoint and PDF formats) are virtually 

identical to the lecture slides provided to an instructor for use in the classroom. The 

student set has been designed to allow for note taking on printouts. (Found under 

Read, Study & Practice/CONTENTS/Select Chapter Number/CHAPTER 

RESOURCES/Student Lecture Notes.)

 • Answers to Concept Check questions. Students can visit the web site to find the 

correct answers to the Concept Check questions posed in the textbook. (Found 

under Read, Study & Practice/CONTENTS/Select Chapter Number/PRACTICE/

Concept Check Questions/Concept Check Number/Show Solution.)

 • Online Self-Assessment Exercises. A set of questions and problems for each chapter 

that are similar to those found in the text. An answer to each problem/question 

entered by the student is assessed as either correct or incorrect, after which both the 

solution and answer are provided. (Found under Read, Study & Practice/CONTENTS/

Select Chapter Number/PRACTICE/Practice Questions and Problems.)

 • Math Skills Review. This is a tutorial that includes instructions on how to solve a 

variety of mathematical equations, some of which appear in the homework 

problems. Examples are also provided. (Found under Read, Study & Practice/

CONTENTS/Chapter 22.)

What do instructors receive with WileyPLUS?

WileyPLUS provides reliable, customizable resources that reinforce course goals inside 

and outside of the classroom as well as visibility into individual student progress. Prepared 

 materials and activities help instructors optimize their time.

The same resources are provided as are found for students as noted above.

The opportunity to pre-prepare activities, including:

 • Questions

 • Readings and resources

 • Presentations

Course materials and assessment content:

 • Complete set of Lecture PowerPoint slides (or Lecture Notes). (Found under 

Prepare & Present/Resources/Select Chapter Number/All Sources/Instructor 

Resources/PowerPoint/GO/Lecture Notes.)

 • Image Gallery. Digital repository of images from the text that instructors may use 

to generate their own PowerPoint slides. (Found under Prepare & Present/

Resources/Select Chapter Number/All Sources/Instructor Resources/PowerPoint/

GO/Image Gallery.)

 • Solutions Manual (Textbook). The manuals contain solutions/answers for all 

problems/questions in the textbook. (Found under Prepare & Present/Resources/

Select Chapter Number/All Sources/Instructor Resources/Document/GO/Chapter 

Solutions Manual.)

 • Solutions Manual (ME Online Module). (Found under Prepare & Present/

Resources/Mechanical Engineering Module/All Sources/Instructor Resources/

Document/GO/Solutions for ME Module.)
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 • Solutions Manual (Library of Case Studies). (Found under Prepare & Present/

Resources/Select Any Chapter/All Sources/Instructor Resources/Document/GO/

Solutions to the Library Case Studies/Word or PDF.)

 • Problem Conversion Guide. This guide correlates homework problems/questions 

between the previous and current textbook editions. (Found under Prepare & 

Present/Resources/Select Any Chapter/All Sources/Instructor Resources/

Document/GO/Problem Conversion Guide: 9th edition to 10th edition.)

 • Problems/Questions. Selected problems coded algorithmically with hints, links to 

text, whiteboard/show work feature and instructor controlled problem solving help. 

[Found under Assignment/Questions/Select Chapter Number/Select Section 

Number (or All Sections)/Select Level (or All Levels)/All Sources/GO.]

 • Answers to Concept Check Questions. (Found under Assignment/Questions/Select 

Chapter Number/All Sections/All Levels/All Sources/GO/Question Name.)

 • List of Classroom Demonstrations and Laboratory Experiments. These demos 

and experiments portray phenomena and/or illustrate principles that are discussed 

in the book; references are also provided that give more detailed accounts of them. 

(Found under Prepare & Present/Resources/Select Any Chapter/All Sources/

Instructor Resources/All File Types/GO/Experiments and Classroom 

Demonstrations.)

 • Suggested Course Syllabi for the Various Engineering Disciplines. Instructors may 

consult these syllabi for guidance in course/lecture organization and planning. 

(Found under Prepare & Present/Resources/Select Any Chapter/All Sources/

Instructor Resources/All File Types/GO/Sample Syllabi.)

 • Gradebook. WileyPLUS provides instant access to reports on trends in class 

performance, student use of course materials and progress towards learning 

objectives, helping inform decisions and drive classroom discussions. (Found under 

Gradebook.)

STUDENT AND INSTRUCTOR COMPANION SITES
(www.wiley.com/college/callister)

For introductory materials science and engineering courses that do not use WileyPLUS, 

print and digital (for purchase) versions of the book are available. In addition, online 

resources may be accessed on a Student Companion Site (for students) and an Instructor 

Companion Site (for instructors). Some, but not all of the WileyPLUS resources are found 

on these two sites.

The following resources may be accessed on the STUDENT COMPANION SITE:

 • Student Lecture PowerPoint Slides

 • Answers to Concept Check Questions

 • Extended Learning Objectives

 • Mechanical Engineering (ME) Online Module

 • Math Skills Review

Whereas for the INSTRUCTOR COMPANION SITE the following resources are 

available:

 • Solutions Manuals (in PDF and Word formats)

 • Answers to Concept Check Questions

 • Problem Conversion Guide

 • Complete Set of Lecture PowerPoint Slides

 • Extended Learning Objectives
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 • Image Gallery.

 • Mechanical Engineering (ME) Online Module

 • Solutions to Problems in the ME Online Module

 • Suggested Syllabi for the Introductory Materials Course

 • Math Skills Review

We have a sincere interest in meeting the needs of educators and students in the materi-

als science and engineering community, and therefore solicit feedback on this edition. 

Comments, suggestions, and criticisms may be submitted to the authors via email at the fol-

lowing address: billcallister2419@gmail.com.

Since we undertook the task of writing this and previous editions, instructors and students, 

too numerous to mention, have shared their input and contributions on how to make this 

work more effective as a teaching and learning tool. To all those who have helped, we express 

our sincere thanks.

We express our appreciation to those who have made contributions to this edition. 

We are especially indebted to the following for their feedback and suggestions for this 

edition:

 • Eric Hellstrom of Florida State University

 • Marc Fry and Hannah Melia of Granta Design

 • Dr. Carl Wood

 • Norman E. Dowling of Virginia Tech

 • Tristan J. Tayag of Texas Christian University

 • Jong-Sook Lee of Chonnam National University, Gwangju, Korea

We are also indebted to Linda Ratts, Executive Editor; Agie Sznajdrowicz, Project 

Manager; Adria Giattino, Associate Development Editor; Adriana Alecci, Editorial 

 Assistant; Jen Devine, Permissions Manager; Ashley Patterson, Production Editor; and 

MaryAnn Price, Senior Photo Editor.

Last, but certainly not least, we deeply and sincerely appreciate the continual 

 encouragement and support of our families and friends.

 William D. Callister, Jr.

  David G. Rethwisch

 September 2017
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 Cí =  concentration (composition) of 

component i in at% (4.4)

 C𝜐, Cp =  heat capacity at constant 

volume, pressure (19.2)

 CPR =  corrosion penetration rate 

(17.3)

 CVN = Charpy V-notch (8.6)

 %CW = percent cold work (7.10)

 c =  lattice parameter: unit cell 

z-axial length (3.7)

 c =  velocity of electromagnetic 

radiation in a vacuum (21.2)

 D = diffusion coefficient (5.3)

 D = dielectric displacement (18.19)

 DP =  degree of polymerization (14.5)

 d = diameter

 d = average grain diameter (7.8)

 dhkl =  interplanar spacing for planes 

of Miller indices h, k, and l 
(3.16)

 E = energy (2.5)

 E =  modulus of elasticity or 

Young’s modulus (6.3)

 ℰ = electric field intensity (18.3)

 Ef = Fermi energy (18.5)

 Eg = band gap energy (18.6)

 Er(t) = relaxation modulus (15.4)

 %EL =  ductility, in percent elongation 

(6.6)

 e =  electric charge per electron 

(18.7)

 e–  = electron (17.2)

 erf = Gaussian error function (5.4)

 exp =  e, the base for natural 

logarithms

 F =  force, interatomic or 

mechanical (2.5, 6.2)

 ℱ = Faraday constant (17.2)

 FCC =  face-centered cubic crystal 

structure (3.4)

 G = shear modulus (6.3)

 H = magnetic field strength (20.2)

 Hc = magnetic coercivity (20.7)

 HB = Brinell hardness (6.10)

 HCP =  hexagonal close-packed crystal 

structure (3.4)

 HK = Knoop hardness (6.10)

 HRB, HRF =  Rockwell hardness: B and F 

scales (6.10)

 HR15N, HR45W =  superficial Rockwell hardness: 

15N and 45W scales (6.10)

 HV = Vickers hardness (6.10)

 h = Planck’s constant (21.2)

 (hkl) =  Miller indices for a crystallo-

graphic plane (3.10)

• xix



xx  •  List of Symbols

 (hkil) =  Miller indices for a crystal-

lographic plane, hexagonal 

crystals (3.10) 

 I = electric current (18.2)

 I =  intensity of electromagnetic 

radiation (21.3)

 i = current density (17.3)

 iC =  corrosion current density (17.4)

 J =  diffusion flux (5.3) 

 J  = electric current density (18.3)

 Kc = fracture toughness (8.5)

 KIc =  plane strain fracture tough-

ness for mode I crack surface 

displacement (8.5)

 k = Boltzmann’s constant (4.2)

 k = thermal conductivity (19.4)

 l =  length 

 lc  = critical fiber length (16.4)

 ln = natural logarithm

 log = logarithm taken to base 10

 M  = magnetization (20.2)

 M
—

n =  polymer number-average 

 molecular weight (14.5)

 M
—

w =  polymer weight-average 

 molecular weight (14.5)

 mol% = mole percent

 N = number of fatigue cycles (8.8)

 NA = Avogadro’s number (3.5)

 Nf = fatigue life (8.8)

 n = principal quantum number (2.3)

 n =  number of atoms per unit cell 

(3.5)

 n =  strain-hardening exponent (6.7)

 n =  number of electrons in an 

 electrochemical reaction (17.2)

 n =  number of conducting elec-

trons per cubic meter (18.7)

 n = index of refraction (21.5)

 nʹ =  for ceramics, the number of 

formula units per unit cell 

(12.2)

 ni =  intrinsic carrier (electron and 

hole) concentration (18.10)

 P = dielectric polarization (18.19)

 P–B ratio = Pilling–Bedworth ratio (17.10)

 p =  number of holes per cubic 

meter (18.10)

 Q = activation energy

 Q =  magnitude of charge stored 

(18.18)

 R = atomic radius (3.4)

 R = gas constant

 %RA =  ductility, in percent reduction 

in area (6.6)

 r = interatomic distance (2.5)

 r  = reaction rate (17.3)

 rA, rC =  anion and cation ionic radii 

(12.2)

 S  = fatigue stress amplitude (8.8)

 SEM =  scanning electron microscopy 

or microscope

 T = temperature

 Tc = Curie temperature (20.6)

 TC =  superconducting critical 

temperature (20.12)

 Tg =  glass transition temperature 

(13.10, 15.12)

 Tm = melting temperature

 TEM =  transmission electron 

 microscopy or microscope

 TS  = tensile strength (6.6)

 t = time

 tr = rupture lifetime (8.12)

 Ur = modulus of resilience (6.6)

 [u𝜐w] =  indices for a crystallographic 

direction (3.9)

 [uvtw], [UVW] =  indices for a crystallographic 

direction, hexagonal crystals 

(3.9)

 V  =  electrical potential difference

   (voltage) (17.2, 18.2)

 VC  =  unit cell volume (3.4)

 VC = corrosion potential (17.4)

 VH = Hall voltage (18.14)

 Vi = volume fraction of phase i (9.8)

 𝜐 = velocity

 vol% = volume percent

 Wi = mass fraction of phase i (9.8)

 wt% = weight percent (4.4)

 x = length

 x = space coordinate

 Y =  dimensionless parameter or 

function in fracture toughness 

expression (8.5)

 y = space coordinate

 z = space coordinate

 α =  lattice parameter: unit cell y–z 
interaxial angle (3.7)

 α, 𝛽, 𝛾 = phase designations

 αl =  linear coefficient of thermal 

expansion (19.3)

 𝛽 =  lattice parameter: unit cell x–z 
interaxial angle (3.7)

 𝛾 =  lattice parameter: unit cell x–y 
interaxial angle (3.7)

 𝛾 = shear strain (6.2)

 ∆ =  precedes the symbol of a pa-

rameter to denote finite change

 ε  = engineering strain (6.2)

 ε = dielectric permittivity (18.18)



List of Symbols  •  xxi

 εr =  dielectric constant or relative 

permittivity (18.18)

 ε·S = steady-state creep rate (8.12)

 εT  = true strain (6.7)

 η = viscosity (12.10)

 η = overvoltage (17.4)

 2θ = Bragg diffraction angle (3.16)

 θD = Debye temperature (19.2)

 λ =  wavelength of electromagnetic 

radiation (3.16)

 μ = magnetic permeability (20.2)

 μB = Bohr magneton (20.2)

 μr =  relative magnetic permeability 

(20.2)

 μe = electron mobility (18.7)

 μh = hole mobility (18.10)

 ν = Poisson’s ratio (6.5)

 ν =  frequency of electromagnetic 

radiation (21.2)

 ρ = density (3.5)

 ρ = electrical resistivity (18.2)

 ρt =  radius of curvature at the tip of 

a crack (8.5)

 σ =  engineering stress, tensile or 

compressive (6.2)

 σ  = electrical conductivity (18.3)

 σ* =  longitudinal strength (compos-

ite) (16.5)

 σc =  critical stress for crack propa-

gation (8.5)

 σfs = flexural strength (12.9)

 σm = maximum stress (8.5)

 σm = mean stress (8.7)
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C h a p t e r 1  Introduction

A familiar item fabricated from three different material types is the 

beverage container. Beverages are marketed in aluminum (metal) cans 

(top), glass (ceramic) bottles (center), and plastic (polymer) bottles 

(bottom).
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Learning Objectives

After studying this chapter, you should be able to do the following:

1.  List six different property classifications of 
materials that determine their applicability.

2.  Cite the four components that are involved in 
the design, production, and utilization of materials, 
and briefly describe the interrelationships 
between these components.

3.  Cite three criteria that are important in the 
materials selection process.

4. (a)  List the three primary classifications 
of solid materials, and then cite the 
distinctive chemical feature of each.

(b)  Note the four types of advanced materials 
and, for each, its distinctive feature(s).

5. (a) Briefly define smart material/system.
(b)  Briefly explain the concept of nanotechnology 

as it applies to materials.

Please take a few moments and reflect on what your life would be like without all of 

the materials that exist in our modern world. Believe it or not, without these materials 

we wouldn’t have automobiles, cell phones, the internet, airplanes, nice homes and 

their furnishings, stylish clothes, nutritious (also “junk”) food, refrigerators, televisions, 

computers . . . (and the list goes on). Virtually every segment of our everyday lives is 

influenced to one degree or another by materials. Without them our existence would be 

much like that of our Stone Age ancestors.

Historically, the development and advancement of societies have been intimately 

tied to the members’ ability to produce and manipulate materials to fill their needs. In 

fact, early civilizations have been designated by the level of their materials development 

(Stone Age, Bronze Age, Iron Age).1

The earliest humans had access to only a very limited number of materials, those that 

occur naturally: stone, wood, clay, skins, and so on. With time, they discovered techniques 

for producing materials that had properties superior to those of the natural ones; these 

new materials included pottery and various metals. Furthermore, it was discovered that the 

properties of a material could be altered by heat treatments and by the addition of other 

substances. At this point, materials utilization was totally a selection process that involved 

deciding from a given, rather limited set of materials, the one best suited for an application 

by virtue of its characteristics. It was not until relatively recent times that scientists came to 

understand the relationships between the structural elements of materials and their proper-

ties. This knowledge, acquired over approximately the past 100 years, has empowered them 

to fashion, to a large degree, the characteristics of materials. Thus, tens of thousands of dif-

ferent materials have evolved with rather specialized characteristics that meet the needs of 

our modern and complex society, including metals, plastics, glasses, and fibers.

The development of many technologies that make our existence so comfortable 

has been intimately associated with the accessibility of suitable materials. An advance-

ment in the understanding of a material type is often the forerunner to the stepwise 

progression of a technology. For example, automobiles would not have been possible 

without the availability of inexpensive steel or some other comparable substitute. In the 

contemporary era, sophisticated electronic devices rely on components that are made 

from what are called semiconducting materials.

1.1 HISTORICAL PERSPECTIVE

1The approximate dates for the beginnings of the Stone, Bronze, and Iron ages are 2.5 million bc, 3500 bc, and 

1000 bc, respectively.
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Sometimes it is useful to subdivide the discipline of materials science and engineering 

into materials science and materials engineering subdisciplines. Strictly speaking, materials 

science involves investigating the relationships that exist between the structures and 

properties of materials (i.e., why materials have their properties). In contrast, materials 

engineering involves, on the basis of these structure–property correlations, designing or 

engineering the structure of a material to produce a predetermined set of properties. From 

a functional perspective, the role of a materials scientist is to develop or synthesize 

new materials, whereas a materials engineer is called upon to create new products or 

systems using existing materials and/or to develop techniques for processing materials. 

Most graduates in materials programs are trained to be both materials scientists and 

materials engineers.

Structure is, at this point, a nebulous term that deserves some explanation. In brief, 

the structure of a material usually relates to the arrangement of its internal components. 

Structural elements may be classified on the basis of size and in this regard there are 

several levels:

 • Subatomic structure—involves electrons within the individual atoms, their energies 

and interactions with the nuclei.

 • Atomic structure—relates to the organization of atoms to yield molecules or crystals.

 • Nanostructure—deals with aggregates of atoms that form particles (nanoparticles) 

that have nanoscale dimensions (less that about 100 nm).

 • Microstructure—those structural elements that are subject to direct observation using 

some type of microscope (structural features having dimensions between 100 nm 

and several millimeters).

 • Macrostructure—structural elements that may be viewed with the naked eye (with 

scale range between several millimeters and on the order of a meter).

Atomic structure, nanostructure, and microstructure of materials are investigated using 

microscopic techniques discussed in Section 4.10.

The notion of property deserves elaboration. While in service use, all materials are 

exposed to external stimuli that evoke some types of responses. For example, a speci-

men subjected to forces experiences deformation, or a polished metal surface reflects 

light. A property is a material trait in terms of the kind and magnitude of response to a 

specific imposed stimulus. Generally, definitions of properties are made independent of 

material shape and size.

Virtually all important properties of solid materials may be grouped into six differ-

ent categories: mechanical, electrical, thermal, magnetic, optical, and deteriorative. For 

each, there is a characteristic type of stimulus capable of provoking different responses. 

These are noted as follows:

 • Mechanical properties—relate deformation to an applied load or force; examples 

include elastic modulus (stiffness), strength, and resistance to fracture.

 • Electrical properties—the stimulus is an applied electric fi eld; typical properties in-

clude electrical conductivity and dielectric constant.

 • Thermal properties—are related to changes in temperature or temperature gradients 

across a material; examples of thermal behavior include thermal expansion and heat 

capacity.

 • Magnetic properties—the responses of a material to the application of a magnetic 

fi eld; common magnetic properties include magnetic susceptibility and magnetization.

 • Optical properties—the stimulus is electromagnetic or light radiation; index of re-

fraction and refl ectivity are representative optical properties.

1.2 MATERIALS SCIENCE AND ENGINEERING
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 • Deteriorative characteristics—relate to the chemical reactivity of materials; for 

example, corrosion resistance of metals.

The chapters that follow discuss properties that fall within each of these six classifications.

In addition to structure and properties, two other important components are in-

volved in the science and engineering of materials—namely, processing and performance. 

With regard to the relationships of these four components, the structure of a material 

depends on how it is processed. Furthermore, a material’s performance is a function of 

its properties.

We present an example of these processing-structure-properties-performance 

principles in Figure 1.1, a photograph showing three thin disk specimens placed over 

some printed matter. It is obvious that the optical properties (i.e., the light transmit-

tance) of each of the three materials are different; the one on the left is transparent 

(i.e., virtually all of the reflected light from the printed page passes through it), whereas 

the disks in the center and on the right are, respectively, translucent and opaque. All of 

these specimens are of the same material, aluminum oxide, but the leftmost one is what 

we call a single crystal—that is, has a high degree of perfection—which gives rise to its 

transparency. The center one is composed of numerous and very small single crystals 

that are all connected; the boundaries between these small crystals scatter a portion of 

the light reflected from the printed page, which makes this material optically translu-

cent. Finally, the specimen on the right is composed not only of many small, intercon-

nected crystals, but also of a large number of very small pores or void spaces. These 

pores scatter the reflected light to a greater degree than the crystal boundaries and 

render this material opaque. Thus, the structures of these three specimens are different 

in terms of crystal boundaries and pores, which affect the optical transmittance proper-

ties. Furthermore, each material was produced using a different processing technique. 

If optical transmittance is an important parameter relative to the ultimate in-service 

application, the performance of each material will be different.

This interrelationship among processing, structure, properties, and performance 

of materials may be depicted in linear fashion as in the schematic illustration shown in 

Figure 1.2. The model represented by this diagram has been called by some the central 
paradigm of materials science and engineering or sometimes just the materials paradigm. 

(The term “paradigm” means a model or set of ideas.) This paradigm, formulated in the 

1990s is, in essence, the core of the discipline of materials science and engineering. It 

describes the protocol for selecting and designing materials for specific and well-defined 

Figure 1.1 Three thin disk specimens of 

aluminum oxide that have been placed over a 

printed page in order to demonstrate their 

differences in light-transmittance characteristics. 

The disk on the left is transparent (i.e., virtually 

all light that is reflected from the page passes 

through it), whereas the one in the center is 

translucent (meaning that some of this reflected 

light is transmitted through the disk). The disk 

on the right is opaque—that is, none of the light 

passes through it. These differences in optical 

properties are a consequence of differences in 

structure of these materials, which have resulted 

from the way the materials were processed.
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Why do engineers and scientists study materials? Simply, because things engineers design 

are made of materials. Many an applied scientist or engineer (e.g., mechanical, civil, chemi-

cal, electrical), is at one time or another exposed to a design problem involving materials—

for example, a transmission gear, the superstructure for a building, an oil refinery com-

ponent, or an integrated circuit chip. Of course, materials scientists and engineers are 

specialists who are totally involved in the investigation and design of materials.

Many times, an engineer has the option of selecting a best material from the 

thousands available. The final decision is normally based on several criteria. First, the 

in-service conditions must be characterized, for these dictate the properties required of 

the material. Only on rare occasions does a material possess the optimum or ideal com-

bination of properties. Thus, it may be necessary to trade one characteristic for another. 

The classic example involves strength and ductility; normally, a material having a high 

strength has only a limited ductility. In such cases, a reasonable compromise between 

two or more properties may be necessary.

A second selection consideration is any deterioration of material properties that 

may occur during service operation. For example, significant reductions in mechanical 

strength may result from exposure to elevated temperatures or corrosive environments.

Finally, probably the overriding consideration is that of economics: What will the fin-

ished product cost? A material may be found that has the optimum set of properties but is 

prohibitively expensive. Here again, some compromise is inevitable. The cost of a finished 

piece also includes any expense incurred during fabrication to produce the desired shape.

The more familiar an engineer or scientist is with the various characteristics and 

structure–property relationships, as well as the processing techniques of materials, the 

more proficient and confident he or she will be in making judicious materials choices 

based on these criteria.

1.3  WHY STUDY MATERIALS SCIENCE 
AND ENGINEERING?

Figure 1.2 The four components of the discipline of materials science and 

engineering and their interrelationship.

Processing Structure Properties Performance

applications, and has had a profound influence on the field of materials.2 Previous to this 

time the materials science/engineering approach was to design components and systems 

using the existing palette of materials. The significance of this new paradigm is reflected 

in the following quotation: “. . . whenever a material is being created, developed, or 

produced, the properties or phenomena the material exhibits are of central concern. 

Experience shows that the properties and phenomena associated with a material are 

intimately related to its composition and structure at all levels, including which atoms 

are present and how the atoms are arranged in the material, and that this structure is the 

result of synthesis and processing.”3

Throughout this text, we draw attention to the relationships among these four com-

ponents in terms of the design, production, and utilization of materials.

2This paradigm has recently been updated to include the component of material sustainability in the “Modified 

Paradigm of Materials Science and Engineering,” as represented by the following diagram:

Processing → Structure → Properties → Performance → Reuse/Recyclability
3“Materials Science and Engineering for the 1990s,” p. 27, National Academies Press, Washington, DC, 1998.
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Figure 1.3 The Liberty ship S.S. Schenectady, which, in 1943, failed 

before leaving the shipyard.
(Reprinted with permission of Earl R. Parker, Brittle Behavior of Engineering 
Structures, National Academy of Sciences, National Research Council, John 

Wiley & Sons, New York, 1957.)

Liberty Ship Failures

C A S E  S T U D Y  1.1

The following case study illustrates one role that 

materials scientists and engineers are called 

upon to assume in the area of materials performance: 

analyze mechanical failures, determine their causes, 

and then propose appropriate measures to guard 

against future incidents.

The failure of many of the World War II Liberty 

ships4 is a well-known and dramatic example of the 

brittle fracture of steel that was thought to be ductile.5 

Some of the early ships experienced structural dam-

age when cracks developed in their decks and hulls. 

Three of them catastrophically split in half when 

cracks formed, grew to critical lengths, and then rapidly 

propagated completely around the ships’ girths. 

Figure 1.3 shows one of the ships that fractured the 

day after it was launched.

Subsequent investigations concluded one or more 

of the following factors contributed to each failure:6

•  When some normally ductile metal alloys are 

cooled to relatively low temperatures, they be-

come susceptible to brittle fracture—that is, they 

experience a ductile-to-brittle transition upon 

cooling through a critical range of temperatures. 

4During World War II, 2,710 Liberty cargo ships were mass-produced by the United States to supply food and 

materials to the combatants in Europe.
5Ductile metals fail after relatively large degrees of permanent deformation; however, very little if any permanent 

deformation accompanies the fracture of brittle materials. Brittle fractures can occur very suddenly as cracks spread 

rapidly; crack propagation is normally much slower in ductile materials, and the eventual fracture takes longer. 

For these reasons, the ductile mode of fracture is usually preferred. Ductile and brittle fractures are discussed in 

Sections 8.3 and 8.4.
6Sections 8.2 through 8.6 discuss various aspects of failure. 
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9The term metal alloy refers to a metallic substance that is composed of two or more elements.

Solid materials have been conveniently grouped into three basic categories: metals, 

ceramics, and polymers, a scheme based primarily on chemical makeup and atomic 

structure. Most materials fall into one distinct grouping or another. In addition, there 

are the composites that are engineered combinations of two or more different materials. 

A brief explanation of these material classifications and representative characteristics 

is offered next. Another category is advanced materials—those used in high-technology 

applications, such as semiconductors, biomaterials, smart materials, and nanoengi-

neered materials; these are discussed in Section 1.5.

Metals

Metals are composed of one or more metallic elements (e.g., iron, aluminum, copper, 

titanium, gold, nickel), and often also nonmetallic elements (e.g., carbon, nitrogen, 

oxygen) in relatively small amounts.9 Atoms in metals and their alloys are arranged in a 

1.4 CLASSIFICATION OF MATERIALS

These Liberty ships were constructed of steel that 

experienced a ductile-to-brittle transition. Some 

of them were deployed to the frigid North Atlantic, 

where the once ductile metal experienced brittle 

fracture when temperatures dropped to below the 

transition temperature.7

•  The corner of each hatch (i.e., door) was square; 

these corners acted as points of stress concentra-

tion where cracks can form.

•  German U-boats were sinking cargo ships faster 

than they could be replaced using existing con-

struction techniques. Consequently, it became 

necessary to revolutionize construction methods 

to build cargo ships faster and in greater numbers. 

This was accomplished using prefabricated steel 

sheets that were assembled by welding rather 

than by the traditional time-consuming riveting. 

Unfortunately, cracks in welded structures may 

propagate unimpeded for large distances, which 

can lead to catastrophic failure. However, when 

structures are riveted, a crack ceases to propagate 

once it reaches the edge of a steel sheet.

•  Weld defects and discontinuities (i.e., sites where 

cracks can form) were introduced by inexperi-

enced operators.

Remedial measures taken to correct these prob-

lems included the following:

•  Lowering the ductile-to-brittle temperature of 

the steel to an acceptable level by improving steel 

quality (e.g., reducing sulfur and phosphorus im-

purity contents).

•  Rounding off hatch corners by welding a curved 

reinforcement strip on each corner.8

•  Installing crack-arresting devices such as riveted 

straps and strong weld seams to stop propagating 

cracks.

•  Improving welding practices and establishing weld-

ing codes.

In spite of these failures, the Liberty ship pro-

gram was considered a success for several reasons, 

the primary reason being that ships that survived 

failure were able to supply Allied Forces in the 

theater of operations and in all likelihood shortened 

the war. In addition, structural steels were developed 

with vastly improved resistances to catastrophic brit-

tle fractures. Detailed analyses of these failures ad-

vanced the understanding of crack formation and 

growth, which ultimately evolved into the discipline 

of fracture mechanics.

7This ductile-to-brittle transition phenomenon, as well as techniques that are used to measure and raise the critical 

temperature range, are discussed in Section 8.6.
8The reader may note that corners of windows and doors for all of today’s marine and aircraft structures are 

rounded.

Tutorial Video:
What Are the 

Different Classes 

of Materials?
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Figure 1.4
Bar chart of room-

temperature density 

values for various 

metals, ceramics, 

polymers, and 

 composite materials.

very orderly manner (as discussed in Chapter 3) and are relatively dense in comparison 

to the ceramics and polymers (Figure 1.4). With regard to mechanical characteristics, 

these materials are relatively stiff (Figure 1.5) and strong (Figure 1.6), yet are ductile 

(i.e., capable of large amounts of deformation without fracture), and are resistant to 

fracture (Figure 1.7), which accounts for their widespread use in structural applications. 

Metallic materials have large numbers of nonlocalized electrons—that is, these electrons 

are not bound to particular atoms. Many properties of metals are directly attributable 

to these electrons. For example, metals are extremely good conductors of electricity 

(Figure 1.8) and heat, and are not transparent to visible light; a polished metal surface 

has a lustrous appearance. In addition, some of the metals (i.e., Fe, Co, and Ni) have 

desirable magnetic properties.

Tutorial Video:
Metals

Figure 1.5
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Figure 1.7
Bar chart of 

room-temperature 

resistance to fracture 

(i.e., fracture tough-

ness) for various 

metals, ceramics, 

polymers, and 

composite materials.
(Reprinted from 

Engineering Materials 1: 
An Introduction to 

Properties, Applications 
and Design, third 

edition, M. F. Ashby and 

D. R. H. Jones, pages 177 

and 178. Copyright 2005, 

with permission from 

Elsevier.)

Figure 1.9 shows several common and familiar objects that are made of metallic materials. 

Furthermore, the types and applications of metals and their alloys are discussed in Chapter 11.

Ceramics

Ceramics are compounds between metallic and nonmetallic elements; they are most fre-

quently oxides, nitrides, and carbides. For example, common ceramic materials include 

aluminum oxide (or alumina, Al2O3), silicon dioxide (or silica, SiO2), silicon carbide (SiC), 

silicon nitride (Si3N4), and, in addition, what some refer to as the traditional ceramics—those 

composed of clay minerals (e.g., porcelain), as well as cement and glass. With regard to me-

chanical behavior, ceramic materials are relatively stiff and strong—stiffnesses and strengths 

are comparable to those of the metals (Figures 1.5 and 1.6). In addition, they are typically 

very hard. Historically, ceramics have exhibited extreme brittleness (lack of ductility) and are 

highly susceptible to fracture (Figure 1.7). However, newer ceramics are being engineered 

to have improved resistance to fracture; these materials are used for cookware, cutlery, and 

even automobile engine parts. Furthermore, ceramic materials are typically insulative to the 

Tutorial Video:
Ceramics




